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Abstract. This article examines the interaction between prey populations, juvenile predators, and adult 
predators. A mathematical model that considers adding food and anti-predators was developed. The 
equilibria of the existing system are that the system has four equilibria points with conditions suitable for 
the locale. Numerical simulations were carried out to describe the dynamics of the system solution. Based 
on numerical simulations, the varying of parameter causes changes in the extinction of prey or survival of 
prey populations, juvenile predators, and adult predators. Addfood parameters (𝐴) encourae Hopf 
Bifurcation and Saddle-node bifurcation Numerical continuity results show that Hopf bifurcation occurs 
when the parameter value 𝐴 = 1.00162435 and when the parameter value 𝐴 = 2.435303 Saddle-node 
bifurcation occurs. 
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1 Introduction 

The phenomena in ecology, especially in agriculture are 
interesting to study. Pests are plant-disturbing 
organisms ranging from roots, stems, and leaves. 
Planthonppers or insects are one of the pests for plants 
that can damage crops. Therefore, it is necessary to 
improve pest control effort that are environmentally 
friendly. Dragonflies can be used by farmers to control 
various pests, especially in rice fields. Dragonflies are 
natural enemies of planthoppers. An adult dragonfly can 
consume hundreds of leafhoppers every day [1]. 
Dragonfly juvenile that lives in water prey on 
leafhoppers or small insects. Adult dragonflies will eat 
on the other pests on the surface of the water ranging 
from leafhoppers to insects. The phenomenon of natural 
enemies can affect the development of pest populations, 
thereby protecting crops from damage and crop failure. 
The reduction in the number of pests makes dragonfly 
as predator look for alternative food other than 
leafthoppers. Additional food is needed to keep adult 
predatory species from becoming extinct so that the 
balance between pest and both of predator species is 
controlled [2]. 

Mathematical models provide more insight into 
prey-predator population dynamics. Many researches 
have developed in different models of one prey-two 
predator or two prey-one predators [3,4,5,6], and a 
stage-structure for predators [7,8,9,10]. Model [10] also 
discusses the Rosenzweig-MacAthur model with the 
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effect refuge for immature prey. Tang and Xiao [11] has 
introduced anti-predator behaviour for predator. Panja 
[12] proposes effects anti-predator defense in a prey-
predator model using Ratio-dependent functional 
response to make the model more realistic. Prasad [13], 
Ulfa [14], and Zhu et al [15] incorporate food additional 
for predators in their model. Based on the background 
of several studies of prey-predator models, we 
developed a one prey-two predators’ model to provide 
an overview of the dynamics of change through 
numerical simulations. 

1.1 Mathematical Model 

1.1.1 Basic Model 

A one prey-two predator model will be constructed 
based on several assumptions. First, the predators 
consist of a stage-structure, namely juvenile predators 
and adult predators. The prey model with two predators 
considers the effects of addfood and anti-predator 
defenses for juvenile predators. 

The level of predation of predators on prey affects 
changes in population growth. Holling [16] has 
acquainted functional responses that depend only on the 
prey species, namely Holling types I,II, and III. Savitri 
[17], has introduced a mathematical model with two 
predators using ratio-dependent functional response. 
Salamah, et.al [18] considered an anti-predator in a 
modified Leslie-Gower model with Beddington-
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DeAngelis functional response. Apriyani, et al [19] 
discussed ratio-dependent functional responses and also 
considered the effect of anti-predator defense in which 
prey can attack juvenile predators. 

1.1.2 Construction Model 

Based on predator-prey model proposed [17-19], we 
developed three models with different functional 
responses. In this paper we evolve of the prey 
population, juvenile predators, and adult predators 
model to delve the dynamics and also incoporates 
addfood and anti-predator defense. The model is 
obtained as follows 

ௗ௫

ௗ௧
= 𝑟𝑥 ቀ1 −

௫

௞
ቁ −

ఈ௫௬మ

௠ା௫ା௡஺
, 

ௗ௬భ

ௗ௧
=

ఘ௫௬మ

௠ା௫ା௡஺
− 𝛽𝑦ଵ − 𝛾𝑥𝑦ଵ ,    

ௗ௬మ

ௗ௧
= 𝛽𝑦ଵ − 𝜇𝑦ଶ     (1) 

 

Suppose  𝑥 is the population density of prey, 𝑦ଵ 
represents of juvenile predator, and 𝑦ଶ represents of 
adult predator the population density. All parameters 
relevant to the system (1) are positive and are described 
in Table 2.  System (1) uses Holling type II functional 
response on predation rates of adult predators on prey. 

1.2 Material and methods 

We have studied local stability and system solutions and 
conceived of the existence of several equilibria points. 
Numerical simulations were performed using Runge-
Kutta integrals of fourth-order which were displayed 
through phase portraits with Python 3.8 Software. To 
view the complete dynamics of the system, numerical 
continuity with MatCont is used, The parameters 
selected for continuity denote the effect of changing the 
stability of the equilibria point. Change in bifurcation 
dynamics showed by variations in add food parameter 
for predators, namely 𝐴. 

2 Result and Discuss 

2.1 Equilibria  

The equilibria point is received from the equilibria 
solution of the system (1). The growth rates of each 
population is zero. The equilibria point describes the 
constant solution of the system. System (1) has four 
equilibrium points, as follows. 
Table 1. The existence and type equilibria point. 

The equilibria Type of equilibria 
𝐸଴ = (0, 0, 0) The extinction all population 

𝐸ଵ = (k, 0, 0) 
The extinction of both 
predator, namely juvenile 
predator and adult predator 

𝐸ଶ = (𝑥ଶ∗, 𝑦ଵ
ଶ∗, 𝑦ଶ

ଶ∗) The interior equilibria point 
𝐸ଷ = (𝑥ଷ∗, 𝑦ଵ

ଷ∗ , 𝑦ଶ
ଷ∗,) The interior equilibria point 

 
We provide sufficient conditions for the existence of a 
nonnegative root. For 𝑥∗ we get equation. 

ωଵ(𝑥∗ )ଶ + ωଶ(𝑥∗ ) + ωଷ = 0    (2) 

 
With    ωଵ = η𝜇, 

 ωଶ = 𝐴ηn𝜇 + ηm𝜇 − 𝛽𝜌 + 𝛽𝜇,  

 ωଷ = 𝐴𝛽𝑛𝜇 + 𝛽𝑚𝜇 

 
In contrast to all of the equilibria point, 𝐸ଶ = (𝑥ଶ∗, 

𝑦ଵ
ଶ∗, 𝑦ଶ

ଶ∗) and  𝐸ଷ = (𝑥ଷ∗, 𝑦ଵ
ଷ∗, 𝑦ଶ

ଷ∗,) indicates that the 
prey, juvenile predators and adult predators can coexist. 

2.2 The Stability of Equilibria 

Point stability is executed by linearizing the system (1) 
using the Jacobi matrix [20].  
The Jacobi matrix for equilibria point 𝐸଴ 

 

𝐽(𝐸଴) = 𝐽(0,0,0) = ൥

𝑟 0 0
0 −𝛽 0
0 𝛽 −𝜇

൩. 

 
Eigenvalue of the Jacobi matrix 𝐽(𝐸଴) are 𝜆ଵ = 𝑟 >

0, 𝜆ଶ = −𝛽 < 0, and 𝜆ଷ = −𝜇 < 0. Since there are 
positive eigenvalue, The equilibria point 𝐸଴ is also 
unstable, saddle point. 

 
The Jacobi matrix for equilibria point 𝐸ଵ 

 

𝐽(𝐸ଵ) = 𝐽(𝑘, 0,0) =

⎣
⎢
⎢
⎢
⎡−𝑟 0 −

𝛼𝑘

𝐴𝑛 + 𝑘 + 𝑚

0 −η𝑘 − 𝛽
𝜌𝑘

𝐴𝑛 + 𝑘 + 𝑚
0 𝛽 −𝜇 ⎦

⎥
⎥
⎥
⎤

. 

 
With eigenvalue 𝜆ଵ = −𝑟 < 0, the other two 

eigenvalue 𝜆ଶ and 𝜆ଷ are determined by the quadratic 
equation 𝜆ଶ − 𝑇ଵ𝜆 + 𝐷ଵ = 0. Because 𝑇ଵ < 0 and 𝐷ଵ > 0, 
then the eigenvalue for 𝜆ଶ, 𝜆ଷ < 0 are met, The equilibria 
𝐸ଵ is locally asymptotically stable. This indicates that the 
juvenile predators and adult predators are extinct so there is 
only a prey population. 
The stability of the equilibria point 𝐸ଶ and 𝐸ଷ will be 
asymptotically stable if certain conditions are fulfilled. 
It shows that all population, namely pre population, 
juvenile predators, and adult predators will coexist. 
Therefore, the extinction of juvenile predators and adult 
predators or extinction of all populations does not occur 
in the long term. We next investigated the stability of 
𝐸଴, 𝐸ଵ, 𝐸ଶ, and 𝐸ଷ by numerical simulation. 

3 Numerical Simulations 

The analytical solution of system (1) is not easy to 
decide. Therefore, numerical simulation can be 
performed to delve the system behavior. To see the 
behaviour of the solution as a whole, it is identified the 
local stability of equilibria point 𝐸ଵ and 𝐸ଶ.ଷ by varying 
the value of the addfood parameter (𝐴) and deliniate 
change occured of bifurcation diagram by MatCont. 
Next, we provide simulation applying the parameter in 
Table 2, all of the equilibria exist.  
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Table 2. Parameter model used for simulation. 

 
Parameter Description value 

𝑟 The intrinsic growth rate of prey 6.6 
𝑘 Carrying capacity of prey 3.5 

𝛼 
The attack rate of adult predators on 

prey 
1.6 

𝐴 Addfood 
2.416

65 

𝑛 
Relative ability of the both predator 

to detect additional food to prey 
1.2 

𝑚 
The coefficient of environmental 

protection for the prey 
1.3 

𝛽 
The growth rate of adult predators 

comes from the transition of juvenile 
predators into adult predator 

0.7 

𝜌 
Proportionality constant, the 

conversion efficiency of predation 
1.1 

η Anti-predator 0.3 
𝜇 Natural death 0.2 

3.1 Bifurcation Diagram 

In numerical continuity, varying the value of the 
addfood parameter (𝐴) is to indicate changes in the 
stability of several the equilibria point.  Figure 1 
presents the bifurcation diagram of the solution of the 
system (1) which is varying the parameter addfood for 
both of the predator. 

 

Fig. 1. Bifurcation Diagram of System (1). 

a. Hopf Bifurcations 
We perform numerical continuation by selecting the 

parameter of addfood for the predator which is 𝐴, the 
other parameter values remain constant from Table 2. 
Therefore, the emergence of Hopf bifurcation is driven 
by addfood parameter for the predator (𝐴). The Hopf 
bifurcation point occurs when  𝐴 = 1.00162435 as 
shown in Figure 2. The interior equilibria point for 𝐸ଶ = 
(0.812441, 2.999504, 10.498265) when the Hopf 
bifurcation occurs.  

 
Fig. 2. Hopf Bifurcation of System (1) in equilibria 
point 𝑬𝟐 at  𝑨 = 𝟏. 𝟎𝟎𝟏𝟔𝟐𝟒𝟑 

a. Saddle-node phenomenon 
The results of the numerical continuation of the 

parameter 𝑨 show the changes that occur in the stability 
behavior at the interior equilibria point (𝑬𝟐). The 
Bifurcation diagram in Figure 1 shows for 𝟐. 𝟒𝟏𝟔𝟔𝟔𝟕 <
𝑨 < 𝟐. . 𝟒𝟑𝟓𝟑𝟎𝟑. There are two interior equilibria 
points where the difference in stability is (𝑬𝟐) and (𝑬𝟑). 
The phenomenon of the emergence of LP namely Limit 
Point shows that there is a Saddle-node (Fold) 
bifurcation which is driven by the parameter of addfood 
for the predator.  

3.2 Phase Portraits 

The dynamics of the solution of the system (1) have 
been observed in Figure 4 – 6 of the above by phase 
portrait. The figure 3 show the dynamic solution of the 
system (1).  

 

Fig. 3. Timeseries of System (1). 

 Based on the paremeter value in Table 2 and choose 
addfood parameter 𝐴 = 1.00162435, the equilibria 
point 𝐸଴ , 𝐸ଵ, and 𝐸ଶ  are exist. The value of each point 
of equilibria are 𝐸଴ = (0, 0, 0), 𝐸ଵ = (3.5, 0, 0), and 𝐸ଶ = 
(0.812441, 2.999504, 10.498265). Therefore, 𝐸଴ , 𝐸ଵ  
and 𝐸ଷ are unstable and 𝐸ଶ is asymptotically stable. 
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Fig. 4. The Phase Portrait of System (1) leads to the  

3.3 Interior equilibria point for 𝑬𝟐  at  𝑨 =
𝟏. 𝟎𝟎𝟏𝟔𝟐𝟒𝟑𝟓. 

The initial value in Figure 4 shows the initial density of 
all population. With initial value 𝐼ଵ[3.8; 1.5; 6.2],  
𝐼ଶ[0.1; 3.9; 4.6], 𝐼ଷ[2.1; 8.1; 6.5], 𝐼ସ[1.1; 4.3; 9.2]. For 
different initial value, all numerical solution of system 
(1) convergen to the interior equilibria point (𝐸ଶ ), and 
𝐸ଶ  is an asymptotically stable. The result are shown in 
Figure 4. 
We use initial value 𝐼ଵ[3.8; 1.5; 6.2],  
 𝐼ଶ[2.1; 8.1; 6.5],  𝐼ଷ[1.1; 4.3; 7.2],  all numerical 
solution of system (1) lets to the extinction of the 
juvenile predator and adult predator. The equilibria 
point (𝐸ଵ ) is an asymptotically stable. The eigen value 
of 𝐽(𝐸ଵ ) are −3.9985 × 10ିଽ + 0.5756𝐼, −3.9985 ×
10ିଽ − 0.5756𝐼, and −1.4335. 

 

Fig. 5. The Phase Portraiet of System (1) in equilibria 
point 𝑬𝟏 at 𝑨 = 𝟏. 𝟎𝟎𝟏𝟔𝟐𝟒𝟑 

3.4 Double stability phenomenon. 

Another interesting dynamics behavior to observe as 
shown in Figure 5 is the appearance of two different 
stability of the equilibrium points, known as the bi-
stability phenomenon. This phenomenon occurs at 𝐴 =
1.00162435. There are two stabilities in the solution of 
system (3) namely the interior equilibria point (𝐸ଶ) and 
the juvenile predator and adult predator extinction 
equilibria point (𝐸ଵ) which are locally asymptotically 
stable. This phenomenon shows that the system (3) has 
a double stability 

 

 

Fig. 6. The Phase Portriet of System (1) in equilibria 
point 𝑬𝟏 and 𝑬𝟐 at 𝑨 = 𝟏. 𝟎𝟎𝟏𝟔𝟐𝟒𝟑 
 

The equilibria point 𝐸଴ = (0, 0, 0), 𝐸ଵ = (3.5, 0, 0), 
and 𝐸ଶ = (2.8, 1.6, 5.7) are exist. We use the same 
initial value with 𝐼ଵ[3.8; 1.5; 6.2],  
𝐼ଶ[0.1; 3.9; 4.6],  𝐼ଷ[2.1; 8.1; 6.5], and 𝐼ସ[1.1; 4.3; 9.2].  
The numerical solution of system (1) lets to the 
extinction of the juvenile predator and adult predator 
(𝐸ଵ ) for initial value 𝐼ଵ and 𝐼ଶ. The equilibria point (𝐸ଵ ) 
is an asymptotically stable. The eigen value of 𝐽(𝐸ଵ ) are 
−6.6, −1.9, and −9.3 × 10ିଽ. Initial value 𝐼ଷ and 𝐼ସ 
convergen to 𝐸ଶ = (2.8, 1.6, 5.7). The interior 
equilibria point (𝐸ଶ ) is asymptotically stable. The eigen 
value of 𝐽(𝐸ଶ ) are −4.7, −1.7, and −0.002. 
 This study shows the addfood for predator has a 
meaningful on the dynamics of the prey population, 
juvenile predators and adult predators population. 
Therefore, it is prime for ecological models to combine 
predation affect both of the population interaction and 
additionalfood for predator. However, another 
possibilityis to maintain the ecology at coexistence 
working if possible uses the other parameter. 
Finally, we notice that the all population can live 
together with some conditions described. The addfood 
of the predator helps two populations to survive for a 
long period of time without extinct.  
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4 Conclussion 

1. We have numerically studied the population models 
of preys, juvenile predator, and adult predators 
model with Holling Type II functional response by 
considering addfood and anti-predator defense. The 
model has four equilibria points, namely the trivial 
point (𝐸଴), the extinction point both of the predator 
(𝐸ଵ), and the survival of prey, juvenile predators, 
and adult predators point (𝐸ଶ and 𝐸ଷ) are stable 
under certain conditions. Increasing the parameter 
addfood for both of predators (juvenile and adult) 
may stabilize equilibria point (𝐸ଵ). It is can prevent 
extinction on the population of the juvenile 
predator. 
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